

Using Risk Analysis to Optimise Development Drilling Strategy

Stuart Gurden – Talisman Energy Peter McAteer

Claymore Area Overview

- Central North Sea
- Low GOR, low Pb oil
- First production 1977
- Three main producing reservoirs:
 - 1.8 billion barrels STOIIP
 - 800 MMstb reserves
- Production via:
 - 22 platform producers
 - 6 subsea producers
 - 12 subsea injectors

Claymore Probabilistic Drilling Evaluation - Background

- Claymore team drilled platform ERD exploration/appraisal well in 2001-2
 - Significant drilling problems
 - Five month delay to Claymore development drilling schedule
 - Well results 'disappointing'
 - "Why didn't we drill the well subsea???"
- Talisman policy of exploiting near-field opportunities will require additional ERD wells
 - But are subsea well(s) tied back to the Claymore platform the optimum way forward?

ERD vs Subsea Tieback

Reasons to drill ERD platform

- Simple tie-in
- Immediate production
- Reduced overall cost (success case)
- Higher project value (success case)
- ESP option
- Higher reserves in platform well
 - Lower pressure and pipeline losses reduced
 - 500 psi subsea wellhead pressure and 100 psi platform

- Reasons to drill subsea
 - Lower capital exposure to failure
 - Reduced drilling risk
 - Easier sidetrack options

- Key to drilling option is quantifying the project risks!
- Evaluate 2004 step out well probabilistically
 - ERD vs Subsea Tieback

Probabilistic Drilling Evaluation – Tool Outline

- Screening tool to analyse options capturing:
 - Time/cost risk of drilling activities
 - Time/cost risk of tie-back/hook up
 - Capex phasing
 - Reservoir risk is there going to be a production well?
 - Uncertainty in production profiles
 - Produce risked project economics
- Excel spreadsheet model using Crystal Ball probabilistic functions, developed in conjunction with Allomax

Probabilistic Drilling Evaluation – Tool Outline

Probabilistic Drilling Evaluation – Team RAM

- Key risks identified and quantified in Risk Analysis and Management process
- Entire project team involvement:
 - Drilling
 - Completions
 - Facilities
 - Operations
 - Subsurface
- RAM sessions completed for platform and subsea wells

Subsea Tieback

ERD Well

Super-imposed Projects

Probabilistic Drilling Evaluation – Risks

- Key risks from RAM session:
 - Ability to achieve TD in ERD well
 - Geological probability of success
 - Schedule delays (tie-back for subsea case and sequential drilling impact on production targets for ERD)
 - Reservoir quality (East good Claymore, Highlander shaley)
 - Production rate / ultimate recovery
 - Decline model, matched to simulation output (of ESP platform well)
 - Discounted production for gas-lifted subsea well

Probabilistic Drilling Evaluation – Costs/Timing

- Input costs from Drilling, Well Operations and Projects / Facilities teams
- Timing implicitly associated with costs
- Typically skewed distributions

ERD drilling costs distribution

Subsea drilling costs distribution

Probabilistic Drilling Evaluation – Costs/Timing Input (ERD)

Option 1 Costs					Return to Main Menu
	P10	P50	P90	Impact	
Costs Drilling	£9,000,000	£11,000,000	£16,000,000	£11,000,000 Linked to Drilling costs in Economics	
Completion	£2,766,120	£2,953,492	£3,372,995	£2,953,492 Linked to Completion in Economics	
Facilities	£60,000	£90,000	£150,000	£90,000 Linked to Facilities in Economics	
			Total	£14,043,492	
Durations	P10	P50	P90		
Drilling	90	120	160	120 Linked to Total Duration below	
Completion	21	26	34	26 Linked to Total Duration below	
Facilities	1	2	3	2 Linked to Total Duration below	
			Total	148.00 Linked to Duration in Economics	
					Copyright Sysmax Limited Sysmax

Probabilistic Drilling Evaluation – UR Cumulative Probability Curve

•Assumes reservoir POS = 50 %

Probabilistic Drilling Evaluation – Capex Cumulative Probability Curve

•Assumes reservoir POS = 50 %

Probabilistic Drilling Evaluation – NPV Cumulative Probability Curve

•Assumes reservoir POS = 50 %

Probabilistic Drilling Evaluation – Deterministic Evaluation

	ERD Platform Well	Subsea Well
Drilling capex (£MM)	11.00	5.67
Completion capex (£MM)	2.95	3.50
Tie-back/facilities capex (£MM)	0.09	14.70
Total well capex (£MM)	14.04	23.87
Ultimate recovery (MMstb)	6.6	5.3
NPV (£MM)	22.4	1.4
DPI	1.56	0.06

- Risk not taken into account
- ERD well clearly the preferred option

Probabilistic Drilling Evaluation – Expectation NPV v. Geological POS

Intersection of NPV trends occurs at 36 %

Probabilistic Drilling Evaluation – Simplifications/Conclusions

- Probabilistic model is a screening tool but economics are simple
 - No tax calculation
 - Results consistent with full economic model
- Single well project only considered
 - Economics may favour subsea case for a two or three well development
- If 2004 well has greater than 36% POS, ERD well is preferred option
- Useful screening tool that takes account of reservoir risk and cost/timing uncertainties
- Can be used for other probabilistic evaluations
 - Application to Claymore slimhole well evaluation?
- Project took short time